

# RSWM-4X8LR

Wideband Non-Blocking 4X8 Switching Matrix, 100 kHz ... 4000 MHz

# Features

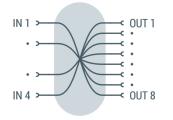
- high dynamic
- high isolation
- non-reflective
- compact 19" 1U design
- graphical user interface

## Applications

- RF signal routing
- satellite ground segment IF routing
- infotainment test
- research & development (R&D)
- test and validation equipment



## At a Glance


Modern RF signal routing systems need an unrestricted access to different signal sources like antennas or signal generators.

RSWM is an innovative and efficient solution in the laboratory, test or validation environment to give many test setups unrestricted access to a variety of signal sources. The wide frequency bandwidth up to more than 4 GHz covers all commercial broadcast services including GNSS.

The non-blocking architecture enables free access to all signal sources from any of its outputs. The same signal source can be used by multiple outputs simultaneously.

# Principal Block Diagram

The RSWM-4X8LR features four equivalent inputs and eight equivalent outputs interconnected via a non-blocking matrix. A single input can route to multiple outputs without any loss of signal transmission.



# Wear-free Solid-State Switches

The RSWM-4X8LR incorporates modern solid-state switching elements, guaranteeing rapid response to operational inputs and an unlimited number of switching cycles with minimal maintenance requirements.

## **High Channel Isolation**

To prevent unintentional signal coupling between different signal types, the device provides high channel isolation. Strong and weak signals in adjacent radio channels do not affect each other.

## **Versatile Control**

The RSWM-4X8LR is equipped with multiple control options for user convenience. It features a local MMI on the front panel, as well as LAN and USB interfaces. Depending on the customer's needs, the system can be managed using the intuitive web-based graphical user interface or through SCPI-based ASCII commands via its interface ports.

## **Synchronous Operation**

The RSWM-4X8LR offers two switching modes:

- Direct: every switching operation is executed after reception of the command.
- Synchronous: all switching commands are stored until a "SYNC" command executes the switching operation synchronously.

Becker Nachrichtentechnik GmbH ■ Kapellenweg 3 ■ 53567 Asbach - Germany ■ www.becker-rf.com

Quality Made in Germany

Subject to change in specification and design without notice. preliminary version 0.91 – November 2023



RoHS compliant in accordance with EU Directive 2015/863

# **External Triggering**

Similar to several other products from Becker Nachrichtentechnik GmbH, the RSWM-4X8LR includes a TRIGGER IO port. This physical interface enables the device to execute switching operations synchronously across multiple matrices, triggered by hardware signals.

# **RF Specification**

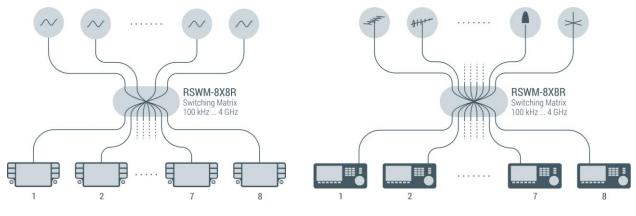
| $\begin{array}{ c c c c c } Impedance & Z_{IV}Z_{OUT} & 50 & \Omega \\ number of inputs & NiN & 4 & & & & & & \\ number of outputs & Nour & 8 & & & & & \\ low frequency & f_{MNN} & 100 & 300 & KHz \\ high frequency & f_{MAX} & 4000 & & & MHz \\ gain & Sz1 & 4 & dB \\ input return loss & S_{11} & -13 & dB \\ output return loss & Sz2 & -17 & dB & f \leq 3 GHz \\ Sz2 & -14 & dB & f \leq 3 GHz \\ Sz2 & -14 & dB & f \leq 3 GHz \\ 1 dB compression & P_{1dB} & +5 & dBm & 500 kHz \leq f \leq 1 GHz \\ P_{1dB} & +44 & dBm & f > 3 GHz \\ \hline reverse isolation & S_{12} & -70 & dB \\ 3^{rd} order intercept & OIP3 & +20 & dBm & 500 kHz \leq f \leq 1 GHz \\ 3^{rd} order intercept & OIP3 & +20 & dBm & 500 kHz \leq f \leq 1 GHz \\ \hline reverse isolation & S_{12} & -70 & dB \\ 3^{rd} order intercept & OIP3 & +20 & dBm & f > 3 GHz \\ \hline noise figure & NF & 10 & dB & f \geq 5 MHz \\ channel isolation & S_{32} & -80 & dB & f \geq 5 MHz \\ output isolation & S_{12} & -35 & dB \\ GF & HT & HT & HT & HT & HT & HT \\ From the provement & P_{RF} & HT & 41 & HT & HT & 1 & HT \\ reverse isolation & S_{12} & -35 & dB \\ FF input power & P_{RF} & HT & 10 & dB & f \geq 5 MHz \\ channel isolation & S_{12} & -35 & dB \\ FF input power & P_{RF} & HT & M & HT & I & I & HT \\ FF connectors & X_{RF} & SMA female \\ FF oncentors & X_{RF} & SMA female \\ FT ingger input & X_{TRG} & BNC female \\ Frigger input & X_{TRG} & SNC female \\ Finger input & X_{TRG} & SNC female \\ Trigger offset & lo_{RISE} & 1.1 & \mus & 50\% trigger \rightarrow 50\% RF failing edge, note 2 \\ switch fialt time & traduk & 2 & \mus & 50\% trigger \rightarrow 50\% RF failing edge, note 2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Parameter                       | Symbol           | Min. | Тур.     | Max.   | Unit | Condition                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|------|----------|--------|------|--------------------------------------------|
| number of outputsNour8Mlow frequencyfmix100300kHzhigh frequencyfmax4000MHzgainS214dBinput return lossS11-13dBoutput return lossS22-17dBS22-14dBf $\leq$ 3 GHz1 dB compressionP1dB+5dBmP1dB+44dBm1 GHz < f $\leq$ 3 GHzreverse isolationS12-70dB3'd order interceptOIP3+20dBmoutput isolationS12-70dBsignarS12-70dBsignarNF10dBsignarS12-70dB1 dB compressionS12-70dB1 dB compressionS12-70 <td>Impedance</td> <td>ZIN/ZOUT</td> <td></td> <td>50</td> <td></td> <td>Ω</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Impedance                       | ZIN/ZOUT         |      | 50       |        | Ω    |                                            |
| $\begin{array}{ c c c c c c } low frequency & f_{MIN} & 4000 & 40 & MHz \\ \hline high frequency & f_{MAX} & 4000 & & MHz \\ \hline gain & S_{21} & 4 & dB \\ \hline input return loss & S_{21} & -13 & dB \\ output return loss & S_{22} & -17 & dB & f \leq 3  GHz \\ \hline S_{22} & 177 & dB & f \leq 3  GHz \\ \hline S_{22} & -14 & dB & f > 3  GHz \\ \hline S_{22} & -14 & dB & f > 3  GHz \\ \hline P_{1dB} & +5 & dBm & 500  kHz \leq f \leq 1  GHz \\ \hline P_{1dB} & -1 & dBm & f > 3  GHz \\ \hline P_{1dB} & -1 & dBm & f > 3  GHz \\ \hline P_{1dB} & -1 & dBm & f > 3  GHz \\ \hline S_{12} & -770 & dB \\ 3'' order intercept & OIP3 & +20 & dBm \\ \hline 3'' order intercept & OIP3 & +14 & I \\ \hline P_{1dB} & -1 & dBm & f > 3  GHz \\ \hline P_{1dB} & -1 & dBm & f > 3  GHz \\ \hline S_{12} & -770 & dB \\ \hline S_{12} & -770 & dB \\ \hline S_{12} & -35 & dB \\ \hline S_{12} & -35 & dB \\ \hline P_{13} & -10 & dB & f \leq 3  GHz \\ \hline P_{14} & -10 & dB & f \leq 3  GHz \\ \hline P_{14} & -10 & dB & f \leq 3  GHz \\ \hline P_{14} & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & -10 & dB & f \leq 3  GHz \\ \hline S_{14} & -10 & -10 & dB & -10 \\ \hline S_{14} & -10 & -10 & dB & -10 \\ \hline S_{14} & -10 & -10 & -10 & -10 \\ \hline S_{14} & -10 & -10 & -10 & -10 \\ \hline S_{14} & -10 & -10 & -10 & -10 \\ \hline S_{14} & -10 & -10 & -10 \\ \hline S_{14} & -10 & -10 & -10 \\ \hline S_{14} & -10 & -10 & -10 \\ \hline S_{14} & -10 & -10 & -10 \\ \hline S_{14} & -10 & -10 & -10 \\ \hline S_{14} & -10 & -10 & -10 \\ \hline S_{14} & -10 & -10 \\ \hline S_{14}$ | number of inputs                | NIN              |      | 4        |        |      |                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | number of outputs               | Νουτ             |      | 8        |        |      |                                            |
| gainS214dBinput return lossS11-13dBoutput return lossS22-17dBS22-14dBf ≤ 3 GHz1 dB compressionP1dB+5dBmP1dB+4dBm500 kHz ≤ f ≤ 1 GHzP1dB-1dBmf > 3 GHzreverse isolationS12-70dB3rd order interceptOIP3+20dBmotder interceptOIP3+20dBmroise figureNF10dBreverse isolationS12-70dB3rd order interceptOIP3+20dBm500 kHz ≤ f ≤ 1 GHz1 GHz < f ≤ 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | low frequency                   | fмin             |      | 100      | 300    | kHz  |                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | high frequency                  | <b>f</b> MAX     | 4000 |          |        | MHz  |                                            |
| output return loss $S_{22}$ $-17$ dB $f \le 3 \text{ GHz}$ $S_{22}$ $-14$ dB $f > 3 \text{ GHz}$ 1 dB compression $P_{1dB}$ $+5$ dBm $500 \text{ kHz} \le f \le 1 \text{ GHz}$ $P_{1dB}$ $+4$ dBm $1 \text{ GHz} < f \le 3 \text{ GHz}$ $P_{1dB}$ $-1$ dBm $f > 3 \text{ GHz}$ reverse isolation $S_{12}$ $-70$ dB $3^{rd}$ order interceptOIP3 $+20$ dBm $500 \text{ kHz} \le f \le 1 \text{ GHz}$ $3^{rd}$ order interceptOIP3 $+14$ $1 \text{ GHz} < f \le 3 \text{ GHz}$ noise figureNF10dB $f \ge 3 \text{ GHz}$ noise figureNF10dB $f \le 3 \text{ GHz}$ output isolation $S_{32}$ $-80$ dB $f \le 3 \text{ GHz}$ output isolation $S_{12}$ $-35$ dBRF input powerPRF $10$ dB $f \le 3 \text{ GHz}$ RF connectorsXRF $SMA \text{ female}$ $sin anage$ RF connectorsXRF $SMA \text{ female}$ $sin anage$ trigger inputXTRIG $BNC \text{ female}$ internal 1 k $\Omega$ pull up, active hightrigger offset $t_0_{-RAL}$ $6.5$ $\mu s$ $50\%$ trigger $\rightarrow 50\%$ RF falling edge, note 2switch rise timetrues1 $\mu s$ $10\% \rightarrow 90\%$ RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gain                            | S <sub>21</sub>  |      | 4        |        | dB   |                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | input return loss               | S <sub>11</sub>  |      | -13      |        | dB   |                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | output return loss              | S <sub>22</sub>  |      | -17      |        | dB   | f ≤ 3 GHz                                  |
| $ \begin{array}{ c c c c } \hline P_{1dB} &   & +4 &   & dBm & 1 \ GHz < f \le 3 \ GHz \\ \hline P_{1dB} &   & -1 &   & dBm & f > 3 \ GHz \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & dB \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -70 &   & -70 \\ \hline P_{1dB} &   & -$     |                                 | S <sub>22</sub>  |      | -14      |        | dB   | f > 3 GHz                                  |
| $\begin{array}{ c c c c c } \hline P_{1dB} &   & -1 &   & dBm & f > 3 \ GHz \\ \hline reverse isolation & S_{12} &   & -70 &   & dB \\ \hline 3^{rd} \ order intercept & OIP3 & +20 &   & dBm & 500 \ kHz \le f \le 1 \ GHz \\ \hline & & +20 &   & dBm & 500 \ kHz \le f \le 3 \ GHz \\ \hline & & +14 &   &   &   \ GHz < f \le 3 \ GHz \\ \hline & & +8 &   & f > 3 \ GHz \\ \hline & & +8 &   & f > 3 \ GHz \\ \hline & & & +8 &   & f > 3 \ GHz \\ \hline & & & +8 &   & f > 3 \ GHz \\ \hline & & & & +8 &   & f > 3 \ GHz \\ \hline & & & & & +8 &   & f > 3 \ GHz \\ \hline & & & & & & & & & & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 dB compression                | P <sub>1dB</sub> |      | +5       |        | dBm  | 500 kHz ≤ f ≤ 1 GHz                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | P <sub>1dB</sub> |      | +4       |        | dBm  | 1 GHz < f ≤ 3 GHz                          |
| $3^{rd}$ order interceptOIP3+20dBm $500 \text{ kHz} \le f \le 1 \text{ GHz}$ $i$ $i$ $i$ $i$ $i$ $i$ $i$ $GHz < f \le 3 \text{ GHz}$ noise figureNF $i$ $i$ $dB$ $f \ge 3 \text{ GHz}$ channel isolation $S_{32}$ $-80$ $dB$ $f \le 3 \text{ GHz}$ output isolation $S_{12}$ $-35$ $dB$ $f \le 3 \text{ GHz}$ output isolation $S_{12}$ $-35$ $dB$ $f \le 3 \text{ GHz}$ output isolation $S_{12}$ $-35$ $dB$ $f \le 3 \text{ GHz}$ output isolation $S_{12}$ $-35$ $dB$ $f \le 3 \text{ GHz}$ output isolation $S_{12}$ $-35$ $dB$ $f \le 3 \text{ GHz}$ output isolation $S_{12}$ $-35$ $dB$ $f \le 3 \text{ GHz}$ output isolation $S_{12}$ $-35$ $dB$ $f \le 3 \text{ GHz}$ output isolation $S_{12}$ $-35$ $dB$ $f \le 3 \text{ GHz}$ RF input power $P_{RF}$ $I = 15$ $V$ $a$ RF connectors $R_{FR}$ $4.7$ $k\Omega$ $a$ RF connectors $X_{RF}$ $SMA$ femaleinternal 1 k $\Omega$ pull up, active hightrigger input $X_{TRIG}$ $TTL (0 / 5 V)$ internal 1 k $\Omega$ pull up, active hightrigger offset $t_0$ _RISE $6.5$ $\mu$ s $50\%$ trigger $\rightarrow 50\%$ RF falling edge, note 2switch rise timet_{RISE}1 $\mu$ s $10\% \rightarrow 90\%$ RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | P <sub>1dB</sub> |      | -1       |        | dBm  | f > 3 GHz                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | reverse isolation               | S <sub>12</sub>  |      | -70      |        | dB   |                                            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 <sup>rd</sup> order intercept | OIP3             |      | +20      |        | dBm  | 500 kHz ≤ f ≤ 1 GHz                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                  |      | +14      |        |      | 1 GHz < f ≤ 3 GHz                          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                  |      | +8       |        |      | f > 3 GHz                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | noise figure                    | NF               |      | 10       |        | dB   | f≥5 MHz                                    |
| $\begin{array}{ c c c c c } RF \mbox{ input power } & P_{RF} &   &   & +15 & dBm & \mbox{ no damage } \\ maximum DC \mbox{ voltage } & U_{DC} &   & 15 & V & \mbox{ all RF ports } \\ ESD \mbox{ discharge resistor } & R_{ESD} & 4.7 & & \mbox{ k}\Omega & \mbox{ all RF ports } \\ RF \mbox{ connectors } & X_{RF} & SMA \mbox{ female } \\ trigger \mbox{ input } & X_{TRIG} & BNC \mbox{ female } \\ trigger \mbox{ level } & U_{TRIG} & TTL (0 / 5 \ V) & \mbox{ internal 1 k}\Omega \mbox{ pull up, active high } \\ trigger \mbox{ offset } & t_{O\_FALL} & 6.5 & \mbox{ level } \\ t_{O\_RISE} & t_{O\_RISE} & 1.1 & \mbox{ less } & \mbox{ switch rise time } \\ trigger \mbox{ level } & t_{RISE} & 1 & \mbox{ level } \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | channel isolation               | S <sub>32</sub>  |      | -80      |        | dB   | f ≤ 3 GHz                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | output isolation                | S <sub>12</sub>  |      | -35      |        | dB   |                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RF input power                  | PRF              |      |          | +15    | dBm  | no damage                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | maximum DC voltage              | UDC              |      |          | 15     | V    | all RF ports                               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ESD discharge resistor          | Resd             |      | 4.7      |        | kΩ   | all RF ports                               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RF connectors                   | XRF              | S    | SMA fema | le     |      |                                            |
| $ \begin{array}{c c} \mbox{trigger offset} & to\_FALL & co\_FALL & co$                                                                                                                                                                                             | trigger input                   | XTRIG            |      | BNC fe   | emale  |      | internal 1 k $\Omega$ pull up, active high |
| to_RISEto_RISE1.1 $\mu$ s50% trigger $\rightarrow$ 50% RF rising edge,<br>note 2switch rise timetRISE1 $\mu$ s10% $\rightarrow$ 90% RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | trigger level                   | UTRIG            |      | TTL (0   | / 5 V) |      |                                            |
| switch rise timetrise1 $\mu$ s10% $\rightarrow$ 90% RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | trigger offset                  | to_fall          |      | 6.5      |        | μs   |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | to_RISE          |      | 1.1      |        | μs   |                                            |
| switch fall time $t_{FALL}$ 2 $\mu s$ 90% $\rightarrow$ 10% RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | switch rise time                | tRISE            |      | 1        |        | μs   | 10% → 90% RF                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                  |      |          |        | μs   |                                            |

Note 1: tested at Pout 2 x -10dBm; ∆f = 2 MHz

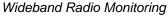
Note 2: capacitive load at 'TRIGGER IO' Port ≤ 100pF, trigger mode "OUT"

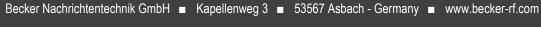
Becker Nachrichtentechnik GmbH 
Kapellenweg 3 
S3567 Asbach - Germany 
www.becker-rf.com

Subject to change in specification and design without notice. preliminary version 0.91 - November 2023




# **Common Specification**


| Parameter                        | Symbol          | Min.                   | Тур.                  | Max.      | Unit   | Condition                                                                                                                                                 |  |  |
|----------------------------------|-----------------|------------------------|-----------------------|-----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| power supply                     | U <sub>AC</sub> | 90                     | 230                   | 260       | V      | 50 / 60 Hz AC                                                                                                                                             |  |  |
| power consumption                | PAC             |                        | 100                   |           | W      |                                                                                                                                                           |  |  |
| power socket                     | X <sub>AC</sub> | IEC                    | -60320 C              | :14       |        | country specific mains cable                                                                                                                              |  |  |
| remote ports                     | LAN             | 10/100                 | BaseT                 | TC        | P/IP   | RJ45 on rear side                                                                                                                                         |  |  |
|                                  | USB             |                        | 2.0 (high             | speed)    |        | USB type B                                                                                                                                                |  |  |
| Dimensions and weigh             | nt              |                        |                       | . ,       |        |                                                                                                                                                           |  |  |
| dimensions                       | WxHxD           | approx. 482 x 44 x 455 |                       |           | mm     | 19" 1U, without connectors and handles                                                                                                                    |  |  |
| weight                           | m               |                        | 5                     |           | kg     |                                                                                                                                                           |  |  |
| Environment condition            | າຣ              |                        |                       |           |        |                                                                                                                                                           |  |  |
| operating temp. range            | To              | +5                     |                       | +45       | °C     |                                                                                                                                                           |  |  |
| storage temp. range              | Ts              | -40                    |                       | +70       | °C     |                                                                                                                                                           |  |  |
| Product conformity               |                 |                        |                       |           |        |                                                                                                                                                           |  |  |
| Electromagnetic<br>compatibility | EU: in line     | e with EM              | C directiv            | e (2014/3 | 30/EC) | applied harmonized standards:<br>EN61326-2-1, (for use in control<br>and laboratory environments),<br>EN55035,<br>EN55032,<br>EN61000-3-2,<br>EN61000-3-3 |  |  |
| Electrical safety                | EU: ir          | i line with<br>(201    | low volta<br>4/35/EC) | •         | ive    | applied harmonized standard:<br>EN 61010-1                                                                                                                |  |  |
| Ordering information             | RSWM-4          | X8LR                   | 2                     | 103.4452  | 2.1    |                                                                                                                                                           |  |  |


# **Application Examples**

The RSWM-4X8LR is versatile, catering to radio monitoring applications and research and development test environments. With the RSWM products, customers can easily route input signals to any device output. As illustrated, the input can be connected to various signal sources or antennas:



Car Infotainment Test with different GNSS Position Data





Subject to change in specification and design without notice. preliminary version 0.91 – November 2023



# **Graphical User Interface**

The graphical user interface (GUI) enables users to define custom labels tailored to their specific applications, making input selection more contextually meaningful.

#### **Matrix Setup Interface**

| 🌣 Matrix        | Setup                  |        |  |               |                 |  |
|-----------------|------------------------|--------|--|---------------|-----------------|--|
| Labels          |                        |        |  |               |                 |  |
| Input Labels    |                        |        |  | Output Labels |                 |  |
| X11             | Input No 1             |        |  | X21           | Output No 1     |  |
| X12             | Input No 2             |        |  | X22           | Output No 2     |  |
| X13             | Input No 3             |        |  | X23           | Output No 3     |  |
| X14             | Input No 4             |        |  | X24           | Output No 4     |  |
| X15             | Input No 5             |        |  | X25           | Output No 5     |  |
| X16             | Input No 6             |        |  | X26           | Output No 6     |  |
| X17             | Input No 7             |        |  | X27           | Output No 7     |  |
| X18             | Input No 8             |        |  | X28           | Output No 8     |  |
| Power Up State  |                        |        |  |               |                 |  |
| i onci op state | ,                      |        |  |               |                 |  |
| Matrix state a  | fter powering up the o | levice |  |               | PRESET SHUTDOWN |  |

# **Matrix Control Interface**

| RSWM-NX8 | Switching Matrix   | 🔹 Setup | 😲 Diagnostic <del>-</del> | 🗲 Tools - | System <del>-</del> |                    |                |                  |            | <b>Q</b> Use |
|----------|--------------------|---------|---------------------------|-----------|---------------------|--------------------|----------------|------------------|------------|--------------|
|          | 🛪 Matrix Con       | trol    |                           |           |                     |                    | ତ Save Preset  | C Restore Preset | () All OFF |              |
|          | Output No 1        | OFF - I | No Input                  |           | ~                   | Output No 5<br>x25 | OFF - No Input |                  | ~          |              |
|          | Output No 2        | OFF - I | No Input                  |           | ~                   | Output No 6<br>X26 | OFF - No Input |                  | *          |              |
|          | Output No 3<br>X23 | OFF - I | No Input                  |           | ~                   | Output No 7<br>X27 | OFF - No Input |                  | *          |              |
|          | Output No 4<br>X24 | OFF - I | No Input                  |           | ~                   | Output No 8<br>X28 | OFF - No Input |                  | ~          |              |
|          |                    |         |                           |           |                     |                    |                |                  |            |              |

2023-08-28 10:37:53



Subject to change in specification and design without notice. preliminary version 0.91 - November 2023



## **Appearances**

**Front View** 

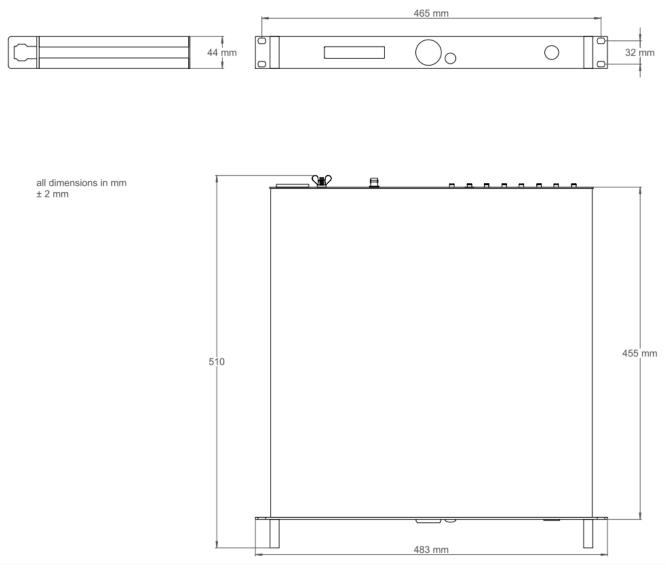


#### **Rear View**

Variant with AC-Supply



Variant with DC-Supply


| x21 ↔<br>()<br>x11 ↔<br>() | X22 ↔<br>()<br>X12 ↔<br>()<br>() | X23 ↔<br>ⓒ<br>X13 & | X24 ↔<br>()<br>X14 ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | x25 ↔<br>()<br>x15 ↔<br>()<br>() | x26 ↔<br>x16 ↔<br>x16 ↔ | x27 ↔<br>ⓒ<br>x17 ↔<br>ⓒ | X28 ↔<br>()<br>X18 ↔<br>()<br>() | +3 dB<br>typ:<br>Z = 50 Ω<br>+10 dBm<br>max. | X71<br>TRIGGER IO<br>X81<br>USB<br>LAN |  |
|----------------------------|----------------------------------|---------------------|-----------------------------------------------------------------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|----------------------------------------------|----------------------------------------|--|
|                            |                                  |                     |                                                                             |                                  |                         |                          |                                  |                                              |                                        |  |

Becker Nachrichtentechnik GmbH 
Kapellenweg 3 
S3567 Asbach - Germany 
www.becker-rf.com

Subject to change in specification and design without notice. preliminary version 0.91 – November 2023



# Dimensions



# Becker Nachrichtentechnik GmbH Kapellenweg 3 S3567 Asbach - Germany www.becker-rf.com

Subject to change in specification and design without notice. preliminary version 0.91 – November 2023



RoHS compliant in accordance with EU Directive 2015/863

# **Related Products**

| Product         | P/N         | Description                                                              |
|-----------------|-------------|--------------------------------------------------------------------------|
| RSWM-4X4LR      | 1205.4402.X | Wideband Non-Blocking 4X4 Switching Matrix                               |
|                 |             | 100 kHz 4000 MHz                                                         |
|                 |             | LAN remote interface with SNMPv2 trap function                           |
| RSWM-4X8LR      | 2103.4452.X | Wideband Non-Blocking 4X8 Switching Matrix                               |
|                 |             | 100 kHz 4000 MHz                                                         |
|                 |             | LAN remote interface with SNMPv2 trap function                           |
| RSWM-8X8LR      | 2103.4552.X | Wideband Non-Blocking 8X8 Switching Matrix                               |
|                 |             | 100 kHz 4000 MHz                                                         |
|                 | 4005 4400 V | LAN remote interface with SNMPv2 trap function                           |
| RSWM-4X4R       | 1205.4102.X | High-Dynamic Non-Blocking 4X4 Switching Matrix                           |
|                 |             | LAN remote interface with SNMPv2 trap function                           |
| RSWM-4X8R       | 2103.4302.X | High-Dynamic Non-Blocking 4X8 Switching Matrix                           |
| 11.00000-47.011 | 2103.4302.7 | 100 kHz 4000 MHz                                                         |
|                 |             | LAN remote interface with SNMPv2 trap function                           |
| RSWM-8X8R       | 2103.4502.X | High-Dynamic Non-Blocking 8X8 Switching Matrix                           |
|                 |             | 100 kHz 4000 MHz                                                         |
|                 |             | LAN remote interface with SNMPv2 trap function                           |
| RSWM-4X4ER      | 1205.4202.X | Extremely Wideband Non-Blocking 4X4 Switching Matrix                     |
|                 |             | 20 8000 MHz                                                              |
|                 |             | LAN remote interface with SNMPv2 trap function                           |
| RSWM-4X8ER      | 2103.4402.X | Extremely Wideband Non-Blocking 4X8 Switching Matrix                     |
|                 |             | 20 8000 MHz                                                              |
|                 |             | LAN remote interface with SNMPv2 trap function                           |
| RSWM-8X8ER      | 2103.4602.X | Extremely Wideband Non-Blocking 8X8 Switching Matrix                     |
|                 |             | 20 8000 MHz                                                              |
|                 | 4005 4500 V | LAN remote interface with SNMPv2 trap function                           |
| BSWM-4X4ER      | 1205.4502.X | 4X4 Bidirectional Blocking Wideband Switching Matrix<br>100 kHz 8000 MHz |
|                 |             | LAN remote interface with SNMPv2 trap function                           |
| BSWM-4X8ER      | 2103.4702.X | 4X8 Bidirectional Blocking Wideband Switching Matrix                     |
| DOWNERADEN      | 2103.4702.7 | 100 kHz 8000 MHz                                                         |
|                 |             | LAN remote interface with SNMPv2 trap function                           |
| BSWM-8X8ER      | 2103.4802.X | 8X8 Bidirectional Blocking Wideband Switching Matrix                     |
|                 |             | 100 kHz 8000 MHz                                                         |
|                 |             | LAN remote interface with SNMPv2 trap function                           |

Becker Nachrichtentechnik GmbH 
Kapellenweg 3 
S3567 Asbach - Germany 
www.becker-rf.com

Subject to change in specification and design without notice. preliminary version 0.91 – November 2023

